首页> 外文OA文献 >Hierarchical analysis-suitable T-splines: Formulation, B\'{e}zier extraction, and application as an adaptive basis for isogeometric analysis
【2h】

Hierarchical analysis-suitable T-splines: Formulation, B\'{e}zier extraction, and application as an adaptive basis for isogeometric analysis

机译:分层分析 - 适合的T样条:配方,B \'{e} zier   提取和应用作为等几何分析的自适应基础

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper hierarchical analysis-suitable T-splines (HASTS) are developed.The resulting spaces are a superset of both analysis-suitable T-splines andhierarchical B-splines. The additional flexibility provided by the hierarchy ofT-spline spaces results in simple, highly localized refinement algorithms whichcan be utilized in a design or analysis context. A detailed theoreticalformulation is presented including a proof of local linear independence foranalysis-suitable T-splines, a requisite theoretical ingredient for HASTS.B\'{e}zier extraction is extended to HASTS simplifying the implementation ofHASTS in existing finite element codes. The behavior of a simple HASTSrefinement algorithm is compared to the local refinement algorithm foranalysis-suitable T-splines demonstrating the superior efficiency and localityof the HASTS algorithm. Finally, HASTS are utilized as a basis for adaptiveisogeometric analysis.
机译:本文开发了适合层次分析的T样条(HASTS)。结果空间是适合分析的T样条和层次B样条的超集。 T样条空间的层次结构提供的额外灵活性导致可以在设计或分析环境中使用的简单,高度本地化的优化算法。提出了详细的理论公式,包括适合分析的T样条的局部线性独立性的证明,这是HASTS的必要理论组成部分。B'{e} zier提取扩展到HASTS,简化了HASTS在现有有限元代码中的实现。将简单的HASTS优化算法的行为与适用于分析的T样条曲线的局部优化算法进行了比较,证明了HASTS算法的优越效率和局部性。最后,HASTS被用作自适应等几何分析的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号